
1

ROGALGOL ALGOL-60 COMPILER

r*0MTr7.TTC
VIS1M X i-iV 1 U

■ 1 , INTRODUCTION 2

2 . THE LANGUAGE 3
2.1 PROGRAM FORMAT 5
2.2 INPUT/OUTPUT PROCEDURES 5
2.3 STANDARD FUNCTIONS 6
2.4 MACHINE CODE STATEMENTS 6
2.5 RESTRICTIONS AND HOW TO GET AROUND THEM 8

3 . THE COMPILER .11
3.1 COMPILER OUTPUT FORMAT 11
3.2 RUNNING THE COMPILER 12
3.3 COMPILER ERROR MESSAGES 13
3.4 COMPILER CORE MAP .14
3.5 ORDER OF COMPILER OVERLAYS 14

4 . THE RUN-TIME SYSTEM J5
4.1 LOADING AND RUNNING A COMPILED PROGRAM 15
4.2 OPERATING CHARACTERISTICS 15
4.3 RUN-TIME FAILURES 16
4.4 RUN-TIME SYSTEM CORE MAP 17
4.5 ARRAY STORAGE WARNING .17
4.6 ORDER OF RUN-TIME SYSTEM OVERLAYS 17

5 . INPUT/OUTPUT DEVICE HANDLERS . 18
5.1 THE DEVICE NUMBER MECH AMI SM .18
5.2 ADDING EXTRA DEVICES .18
5.3 ADDING DEVICES TO THE COMPILER 19
5.5 ADDING DEVICES TO THE RUN-TIME SYSTEM 1?

6 . SYSTEM DEVICE HANDLERS 20
6.1 DISK MONITOR ROUTINES 20
6.2 OS/8 ROUTINES 22

. 6.3 WRITING YOUR OWN SYSTEM DEVICE HANDLER 23

7 . DATA STORAGE IN UNUSED PROGRAM SPACE ~ ^4
7.1 USING SPARE. DEVICE NUMBERS 24
7.2 USING ALGOL PROCEDURES 24

8 INTERNAL REPRESEN TATI ON OF ALGOL BASIC SYMBOLS 25

9 OPERATION CODES 26

2

INTRODUCTION

R3GALG0L IS AN EFFICIENT ALGOL-60 SYSTEM FOR THE PDP8.
ITS SPEED IS USUALLY LIMITED BY THE SPEED OF THE FLOATING
POINT PACKAGE, WHICH MAKES IT THREE TIMES FASTER THAN OS/8
FORTRAN, OR SIX TIMES FASTER ON A MACHINE WITH EAE. THE
COMPILED CODE IS ONE THIRD OF THE LENGTH OF COMPILED FORTRAN,
AND THERE IS CONSIDERABLY MORE SPACE AVAILABLE FOR IT, SO
THAT PROGRAMS AT LEAST FOUR TIMES AS LONG CAN BE RUN THAN IS
POSSIBLE WITH FORTRAN (UNLESS SOME PARTS OF THE
PROGRAM ARE OVERLAID ON A MASS STORAGE DEVICE). ROGALGOL IS
ALSO FASTER AND MORE COMPACT THAN OS/3 FORTRAN IV, BUT NOT
BY SUCH A WIDE MARGIN. DATA STORAGE IS SEPARATE FROM PROGRAM
STORAGE, AND WITH AN 8K MACHINE ABOUT 1160 DECIMAL LOCATIONS
ARE AVAILABLE. THIS IS ASSIGNED DYNAMICALLY AT RUN TIME
SO THAT THERE IS NO WASTAGE - EQUIVALENCING AS IN FORTRAN
IS NOT NECESSARY, THE SYSTEM DOES IT FOR YOU. A MECHANISM
IS PROVIDED FOR STORING EXTRA DATA IN ANY FREE PROGRAM SPACE.
ARRAYS CAM BE PUT INTO A THIRD MEMORY FIELD IF THE MACHINE
HAS MORE THAN 8K OF CORE STORE. THE COMPILED CODE CAN ALSO
BE PLACED IN A THIRD OR FOURTH MEMORY FIELD, ALLOWING THE
SYSTEM TO USE UP TO 16K.

THE MINIMUM HARDWARE IS AN 8tf PDP8 WITH TELETYPE, BUT THE
SYSTEM CAN USE ANY PERIPHERALS, AND WILL RUN UNDER DI SK
MONITOR OR OS/8. THE COMPILER TRANSLATES THE ALGOL SOURCE
IN A SINGLE PASS INTO SIX-BIT OPERATION CODES AND CONSTANTS.
A RUN-TIME PROGRAM READS THE COMPILER OUTPUT DIRECTLY INTO
MEMORY, AND CARRIES OUT THE OPERATIONS SPECIFIED BY THE
CODES. THE COMPACTNESS OF THE COMPILED CODE IS DUE TO
THE FACT THAT TWO INSTRUCTIONS ARE PACKED INTO A SINGLE
PDP8 WORD AND THEY ARE MORE POWERFUL INSTRUCTIONS THAN THE
MACHINE CODE. THE COMPILER OUTPUT IS IN MACRO LANGUAGE, AND
CAN THEREFORE BE ASSEMBLED INTO BINARY. THERE IS NORMALLY NO
NEED TO DO THIS, AS THE RUN-TIME SYSTEM CONTAINS ITS OWN
LOADER.

THE COMPILER IS ITSELF WRITTEN IN ALGOL. THIS HAS ALLOWED
ALMOST ALL THE FEATURES OF ALGOL-60 TO BE IMPLEMENTED EVEN
IN SUCH A SMALL MACHINE AND WITH A ONE PASS COMPILER. THE
FLEXIBILITY WHICH RESULTS FROM THE FACT THAT THE ALGOL
LANGUAGE IS DEFIND RECURSIVLY IS RETAINED IN FULL. THERE
IS NO RESTRICTION ON THE COMPLEXITY OF BLOCK STRUCTURE,
PROCEDURE DECLARATION OR CALLING, CONDITIONAL STATEMENTS
AND EXPRESSIONS OR THE NUMBER OF ARRAY SUBSCRIPTS. PROCEDURE
PARAMETERS OF ALL TYPES ARE ALLOWED, BUT VARIABLES CANNOT
BE CALLED BY NAME NOR ARRAYS BY VALUE. FOR STATEMENT LISTS
ARE NOT RESTRICTED.

THE INPUT/OUTPUT ROUTINES HAVE BEEN ARRANGED IN SUCH A WAY
THAT USERS CAN EASILY ADD THEIR OWN AND CHANGE THE STANDARD
ONES. THE SYSTEMS DEVICE (IF PRESENT) IS HANDLED BY AN
OVERLAY WITH ONLY THREE ENTRY POINTS, MAKING THE ALGOL
COMPILER AND RUN-TIME PROGRAMS SYSTEM INDEPENDENT. OVERLAYS
ARE AVAILABLE FOR OS/8 AND DISK MONITOR.

THE LANGUAGE

ALGOL-60 IS AN INTERNATIONALLY RECOGNISED LANGUAGE. IT HAS
TWO ApVANTAGES OVER FORTRAN FOR THE MINI-COMPUTER USER.
THE FIRST IS THAT DATA STORAGE IS ASSIGNED DYNAMICALLY AS IT
IS NEEDED, AND IS RETURNED WHEN IT I S NO LONGER REQUIRED.
THIS MEANS THAT THERE IS NO NEED TO EQUIVALENCE ARRAYS - IT
IS DONE AUTOMATICALLY. THE SECOND ADVANTAGE IS THAT THE
GREATER POWER OF THE LANGUAGE ALLOWS THE SAME TASK TO BE
ACCOMPLISHED WITH FEWER STATEMENTS AND MUCH GREATER ELEGANCE.

THIS DOCUMENT ASSUMES A KNOWLEDGE OF ALGOL. FOR THOSE REARED
ON FORTRAN AND THOSE WHO HAVE ONLY USED THE ALGOL LANGUAGE
IN AN ELEMENTARY WAY, THE FOLLOWING EXAMPLES ILLUSTRATE
THE FLEXIBILITY AND POWER OF ITS STATEMENTS.

1. THE RECURSIVE ABILITY OF ALGOL IS COMMONLY ILLUSTRATED BY
THE FACTORIAL FUNCTION:
FACTORIAL:*'IF* N= 0 ‘THEN* 0 ’ELSE* N* FACTO RI AL(N- 1) I
THIS IS NOT A VERY GOOD EXAMPLE, BECAUSE TOE OBVIOUS WAY OF
COMPUTING FACTORIAL DOES NOf INVOLVE RECURSION. TOE
EXAMPLE BELOV IS A PROGRAM TO CONVERT MON-PARITY TAPES TO
PARITY TAPES. A NON-RECURS! VE PARITY PROCEDURE WOULD BE MUCH
LONGER. THE PROGRAM STOPS WHEN CTRL/Z IS READ. THE EXPRESSION
(X-X%2*2) HAS THE VALUE 1 IF X IS ODD, OTHERWISE 0.

•BEGIN* ’INTEGER* II
•INTEGER*’PROCEDURE* PARITY(X)I•VALUE* XI ’INTEGER* XI
PARI TO: = * I F’ X*fc) ‘THEN* 0

•ELSE* ABSC PARI TO(X%2)-(X-X22*2) >1

•FOR* Il*CHIN(2) ’WHILE* I#154 *DO!
CHO UTC 2, I - 128* PARI TO C I > > I

•END’S

2. ANYWHERE THAT AN ARITHMETIC VALUE IS NEEDED, ANY ARl THMETI C
EXPRESSION CAN BE USED. TYPE CONVERSION IS DOME AUTOMATICALLY.

ARRAYC CO S(X+ SINCY) -2), 1, I 0 : = *1 F* X#0 ’THEN * 25 ’.ELSE*
COS< ARRAYCI,X + 2.3*SIGN(Y+.5), I 03 >-2 + 11

3. THE LOOP STATEMENT (FORTRAN DO) ISA LIST OF ELEMENTS
WHICH MAY BE A SINGLE VALUE, A STEP ELEMENT (INCREMENTING
OR DECREMENTING) OR AN ASSIGNMENT TO BE MADE REPEATEDLY
UNTIL A BOOLEAN EXPRESSION IS FALSE.

•FOR* A: * 0. 1, II ’STEP* -0.15 ’UNTIL* 1, 25.3,
A* 1.3 ’WHILE* A*Z< 1000, *IF* X<20 ’THEN* 1000 'ELSE* 500 *D0 *

IN FORTRAN, IT WOULD BE NECESSARY TO DELCARE A SUBROUTINE
TO EXECUTE THE EQUIVALENT OF THE ALGOL ’FOR’ CONTROLLED
STATEMENT. THE FORTRAN EQUIVALENT IS:

4

1
9

2

3

4

5
6

7
S

A= 0* 1
CALL SUB
A* 1 1.
IF (A- 1.) 2,9,9
CALL SUB
A: =A-. 15
GOTO 1
A= 2 5 • 3
CALL SUB
A» A* 1.3
IF (A*Z- 1000. >4, 5, 5
CALL SUB
GOTO 3
IF <X-20) 6, 7, 7
A=* 1 0 0 0 •
GO TO 8
A-500.
CALL SUB

4. IT IS EFFICIENT TO DECLARE A FUMTION TO DO A SMALL
CALCULATION THAT OCCURS SEVERAL TIMES.

•BEGIN*
•REAL*•PROCEDURE* SUM<J),* ’VALUE* Ji ‘REAL* J3
SUM: * J + 2* J t 2+ 3*J13;

As = o;
•FOR* I: =» 1 'STEP* 1 ‘UNTIL* 10 *DO*

A: = A+ SUM< ARRAYC 13) + SUM(I + ARRAYC 1 + 23)1
•END* LOCAL BLOCK;

5. COMPLEX LOGICAL CONSTRUCTIONS ARE HANDLED MUCH MORE EASILY
THAN IN FORTRAN, IN WHICH THE FOLLOWING WOULD BE DONE
BE A NUMBER OF LABELLED STATEMENTS AND CONDITIONAL JIM PS.

•IF* X#0 ’THEN'
* BEGIN * * IF* X= 5 'THEN* Y: = *IF* Z=*3 ‘THEN’ 2 ’ELSE* 3;

•IF* X-t * THEN •
•BEGIN* WRITE? 1,Y>; SKIP(l)
•END*‘ELSE* *1 F* X=7 ‘THEN* Y:=Y»2
•ELSE* Y:=Y+X

•END* THE CASE THAT X#0
•ELSE"
•BEGIN * * REAL * TEMP;
TEMP*=Y*Z; * I F* TEMP>20 ‘THEN* XJ*TEMP

•ELSE* Y: - TEMP- 5;
•END* TOE CASE THAT X« 0;

TOE COMPILER TRANSLATES A SOURCE PROGRAM WRITTEN IN ALGOL-60,
SUBJECT TO THE RESTRICTIONS LISTED IN SECTION 2.5. IT MAY
BE ASSUMED THAT ANY FACILITY NOT MENTIONED THERE IS AVAILABLE
TOE MAIN RESTRICTIONS ARE < 1 > THERE ARE NO SWITCHES AND (2)
PROCEDURE PARAMETERS OF TYPE REAL, INTEGER AND BOOLEAN CANNOT
BE CALLED BY NAME, WHILE ARRAYS CANNOT BE CALLED BY VALUE.

VARIABLE ADDRESSES ARE 6 BITS. THIS LIMITS TOE NUMBER OF

5

VARIABLES IN SCOPE AT ONCE IN ANY PROCEDURE OR THE MAIN
PROGRAM TO 63. A FEW ARE USED INTERNALLY.# LEAVING 62 IN
THE MAIN PROGRAM AND 60 IN PROCEDURES FOR THE ALGOL.
ARRAYS COUNT AS ONE VARIABLE. 'FOR* STATEMENTS REQUIRE
ONE VARIABLE SLOT FOR EACH DEPTH OF ‘FOR* STATEMENT
USE - ‘FOR* STATEMENTS NOT EMBEDDED IN OTHERS WILL USE THE SAME
LOCATION. THE TOTAL NUMBER OF VARIABLES IN THE PROGRAM IS
NOT LIMITED, EXCEPT THAT THERE MAY NOT BE MORE THAN 140
IDENTIFIERS IN SCOPE AT ONCE AND THERE MAY MOT BE MORE
THAN 63 PROCEDURES IN TOTAL. THE TOTAL OF LABELS AND PROCEDURES
IN SCOPE PLUS UNRESOLVED FORWARD REFERENCES IS LIMITED TO
100 AT ANY INSTANT DURING COMPILATION, BUT NOT IN TOTAL.

PROGRAM FORMAT

THE SOURCE PROGRAM IS TYPED IN FREE FORMAT. EXCEPT WITHIN
STRINGS, ALL EDITING CHARACTERS AND BLANK TAPE AMD RUBOUT
ARE IGNORED. WITHIN STRINGS, SPACE I S COPIED AND TAB IS
CONVERTED TO SPACE.

LONG BASIC SYMBOLS ARE WRITTEN ENCLOSED IN SINGLE QUOTES,
FOR EXAMPLE *1 F*, ’BEGIN*. INTEGER DIVISION IS DENOTED BY
X, NOT EQUAL TO BY MULTIPLY BY *, LESS THAN OR EQUAL
TO BY <= AND GREATER THAN OR EQUAL TO BY >=*. ALL OTHER SYMBOLS
ARE REPRESENTED BY THEIR TELETYPE EQUIVALENT. ALL LETTERS ARE
CAPITALS. THERE MUST BE A $ FOLLOWING THE LAST ’END*, WITH AN
END COMMENT BETWEEN THEN IF DESIRED.

INPUT/OUTPUT ROUTINES.

THE VARIOUS DEVICES ARE ADDRESSED BY A DEVICE NUMBER,
CALLED DEV IN THE FOLLOWING EXAMFLES. IN THE STANDARD
CONFIGURATION, THESE ARE TELETYPE (DEVICE 1), HIGH
SPEED READER/PUNCH (DEVICE 2) AND SYSTEM FILES (DEVICE 3).
DEVICE 0 WILL FAIL IN AN INPUT ROUTINE, BUT IN AN OUTPUT
ROUTINE THE EFFECT IS THAT THERE IS NO OUTPUT AT ALL,
OTHER DEVICES MAY BE CATERED FOR BY WRITING MACHINE
CODE INSTRUCTIONS IN THE ALGOL PROGRAM, OR BY SETTING IN
THE DEVICE LIST THE ADDRESS OF A MACHINE CODE SUBROUTINE
TO HANDLE IT. THE METHOD IS DESCRIBED IN SECTION 5. THE
MONITOR AND 0 5/8 OVERLAYS USE THE DEVICE THREE LINKING
ROUTINES, AS THEY ARE IN FIELD 0. THIS WILL BE DESCRIBED
IN SECTION 6.

THE FOLLOWING PROCEDURES ARE BUILT INTO THE SYSTEM.

•PROCEDURE* SKIP(DEV); OUTPUT A NEWLINE TO DEV.

•INTEGER*‘PROCEDURE* CHIN(DEV),* READ NEXT CHARACTER FROM DEV,
THE RESULT OF THE PROCEDURE IS THE VALUE OF THE CHARACTER.

•REAL*'PROCEDURE* READ(DEV)? READ A FLOATING POINT OR INTEGER
NUMBER FROM DEV. ALL CHARCTERS OCCURING BEFORE THE START OF A
NUMBER ARE IGNORED. FREE FORMAT, E IS USED FOR DECIMAL

- 6

EXPONENTIATION*

•PROCEDURE* IOC(PARAM); INITIALLY, INPUT FROM THE TELETYPE
KEYBOARD IS NOT ECHOED ON THE PRINTER. IF PARAM § 0, THIS
SWITCHES ON THE ECHO. IOC(0)J WILL SWITCH IT OFF AGAIN*
IOC(-l) WILL SEND AN RFC TO THE HIGH SPEED READER, TO
INITIALISE THE HARDWARE. THE PROGRAM CAN BE MADE TO
READ TAPE IN SECTIONS BY MAKING IT FIRST WAIT FOT A
CHARACTER FROM THE TELETYPE (AS A CUE TO START), THEN
DOING IOC(-l) BEFORE READING FROM DEVi CE 2.

•PROCEDURE* TEXT< DEV,’•STRING”)i OUTPUT A STRING TO DEV. '
BETWEEN STRING QUOTES, PRINTED CHARACTERS ARE REPRODUCED
AS THEY ARE TYPED, THAT IS WORDS ENCLOSED BY SINGLE
QUOTES ARE NOT CONVERTED TO LONG BASIC SYMBOLS. SPACES ARE
COPIED, AND THE TAB CHARACTER IS CONVERTED TO A SINGLE SPACE.
THE STRING MAY ALSO BE A STRING PARAMETER OF THE PROCEDURE
IN WHICH TEXT IS CALLED, IN WHICH CASE IT IS NOT ENCLOSED IN
STRING QUOTES.

•PROCEDURE* RWRITEC DEV, VALUE)S PRINT VALUE IN FLOATING
POINT FORMAT ON DEV. THE FLOATING POINT PACKAGE OUTPUT
ROUTINE IS USED. FORMATTED OUTPUT CAN BE OBTAINED BY
INCORPORATING THE ALGOL PRINT PROCEDURE PROVIDED SEPARATELY
OR A SIMILAR ONE IN TOE ALGOL PROGRAM.

t

•PROCEDURE* WRI TE< DEV, IVAL) J PRINT I VAL AS AN INTEGER ON
DEV. NO NON-SI GNI FI CANT CHARACTERS ARE PRINTED.

•PROCEDURE* CHOUTC DEV, CHAR); OUTPUTS A SINGLE CHARACTER TO
DEV. CHAR IS IN DECIMAL.

•PROCEDURE* D! SK C PARAM > * INITIALISE SYSTEM DEVICE FILES. «
PARAM IS 0 TO 4. THIS ROUTINE WILL BE DISCUSSED IN GREATER
DETAIL IN SECTION 6.

DISKC0); START AGAIN AT THE BEGINNING OF THE INPUT FILE,
THAT IS.REWIND IT.
DISK(l); OPEN AN INPUT FILE. ONLY ONE MAY BE OPEN AT ONCE,
ANY PREVIOUSLY OPEN FILE ^ AUTOMATICALLY CLOSED.
DISK<2); OPEN AN OUTPUT FILE.
DISK<3); CLOSE THE OUTPUT FILE AND OPEN IT FOR READING.
IN THE MONITOR ROUTINES, THERE MUST ALSO HAVE BEEN A FILE
OPEN FOR READING, WHICH IS CLOSED AND OPENED FOR WRITING.
DISK(l) AND DISKC2) USE THE COMMAND DECODERS OF MONITOR
AND OS/8.
FILES MAY BE INITIALISED AT ANY TIME, NOT JUST WHEN A PROGRAM
IS FIRST STARTED.

DEVICES I AND 2 DO NOT HAVE TO BE OPENED OR CLOSED.
SYSTEMS DEVICE INPUT FILES DO NOT HAVE TO BE CLOSED,
BUT OUTPUT FILES MUST BE CLOSED BY SENDING CTRL/Z TO THEM,
BY DOING CHOUTC 3, 254). THIS MUST ALWAYS BE DONE, OTHERWISE
THE LAST BUFFER WILL NOT BE TRANSFERRED, AND IN THE CASE OF
THE OS/8 SYSTEM THE TENTATIVE FILE WILL BE LOST ALTOGETHER.

7 j

2.3 STANDARD FUNCTIONS

THE FULL SET IS AVAILABLE, THAT IS
SORT, SIN, COS, ARCTAN, EXP, LN, SIGN, ENTIER, ABS.

<1

2.4 MACHINE CODE STATEMENTS

THE SYMBOLS 'TRANS' 'ALGOL* ACT AS STATEMENT BRACKETS IN THE
SAME WAY AS 'BEGIN* 'END*. EVERYTHING BETWEEN THEM IS COPIED
TO THE OUTPUT DEVICE, EXCEPT EDITING CHARACTERS. SPACE
IS TRANSLITERATED, HOWEVER. THIS ALLOWS MACHINE CODE TO
BE WRITTEN BETWEEN THE 'TRANS' AND THE 'ALGOL'. A CODE
INSTRUCTION TO LEAVE THE INTERPRETER IS GENERATED AUTOMATICALLY
AT THE 'TRANS', AND A SUBROUTINE JUMP TO RE-ENTER IT AND
CHAGE THE RADIX FOR NUMBERS BACK TO DECIMAL AT THE 'ALGOL*.
REMEMBER TO DO "OCTAL* " IF YOU WANT TO WRITE ADDRESSES ETC.
IN OCTAL. REMEMBER ALSO THAT CARRIAGE RETURN IS NOT COPIED,.
SO ALL MACHINE CODE INSTRUCTIONS MUST BE TERMINATED WITH "*".
THE COMFILER WILL CHANGE ALL SEMICOLONS TO CR/LF, BECAUSE OS/8
CANNOT DEAL WITH LINES OF INDEFINITE LENGTH.

IF MACHINE CODE IS INCLUDED IN AN ALGOL PROGRAM, THE ALGOL
COMPILER OUTPUT MUST BE FUTHER COMPILED INTO BINARY BEFORE
IT CAN BE RUN. PAL MAY BE USED IF THE ALGOL SOURCE CONTAINS
NO FLOATING POINT LITERALS, OTHERWISE MACRO MUST BE USED.

LOCATION 22 (OCTAL) IN FIELD 1 CONTAINS THE ADDRESS OF THE START
OF THE VARIABLES OF THE CURRENT PROCEDURE. THE RESULT
OF A TYPE PROCEDURE IS STORED IN VARIABLE 3, AND PARAMETERS
ARE AT 4 UPWARDS. SUPPOSE WE WANT TOE ADDRESS OF VARIABLE X,
AND TOE CONTENT OF LOCATION 22 IS Y. THEN TOE ADDRESS
OF TOE MOST SIGNIFICANT OF THE 3 WORDS OF X IS GIVEN BY

Y+ 3*(X- 1) •

INTEGERS ARE STORED IN THE LEAST SI GNI FI CANT WORD, THAT IS
AT AN ADDRESS 2 GREATER THAN TOE ONE CALCULATED AS ABOVE.
ALL VARIABLES ARE IN FIELD ONE. THE CODE YOU WRITE WILL
ALWAYS BE IN FIELD 0.
LOCATIONS 0-27 IN FIELD 0 ARE FREE.

TOE PROGRAM SIZE PRINTED'BY TOE COMPILER (WHICH
IS DECIMAL) DOES NOT INCLUDE ANY WORDS OF MACHINE CODE
INTRODUCED BY THIS FACILITY.

NOTE THAT THE INSTRUCTIONS MAY START ANYWHERE ON A PAGE,
SO IF MACRO FAILS PE, YOU MUST WRITE CODE TO START ON A NEW
PAGE. EXAMPLE:

'TRANS' OCTAL* JMP I .+ 1* START*
PAGE*

3

START, TAD 10}.
•ALGOL *S

SHOULD THE "JMP I .+ !!•* TURN OUT TO BE IN THE LAST LOCATION
OF A PAGE (FAIL ILLEGAL INDIRECT), REPLACE IT WITH "NOP*.

THE ADDRESS OF THE NEXT FREE LOCATION IN FIELD 0 IS HELD
IN 00175, AND IS ALSO EQUAL TO THE SYMBOL V, WHICH IS
DEFINED BY THE ALGOL COMPILER OUTPUT.

RESTRICTIONS AND HOW TO GET AROUND THEM.

MOST OF THESE POINTS. WILL APPLY INFREQUENTLY IN NORMAL
ALGOL USAGE. THE BRACKETED NUMBERS REFER TO THE CAUSE OF
THE RESTRICTION, (1) MEANS IT IS DUE TO THE COMPILER
OPERATING IN ONE PASS AND (2) THAT THE PDP8 IS TOO SMALL
TO COMPILE PROGRAMS USING THIS FEATURE UNDER THE PRESENT
SYSTEM.

1. (I) RELATIONAL BOOLEAN PRIMARIES SHOULD NOT START WITH
C. THE REASON IS THAT THIS SYMBOL (AND ’IF’) ARE LEGAL AT THE
START OF AN ARITHMETIC OR BOO-LEAN EXPRESSION, AND THE COMPILER
ASSUMES THEY START A BOOLEAN IF THE CONTEXT IS SUCH THAT
THE FINAL RESULT OF THE EXPRESSION MUST BE BOOLEAN. START
THE RELATION WITH A + , OR REARRANGE IT. EXAMPLES:
•IF* (I - 5) = 25 'THEN*)
BOOL: = (41 F* B ’THEN* 5 ‘ELSE* 6) >X; WILL NOT COMPILE.
THE FOLLOWING WILL COMPILE:
•IF* 1-5=25 ’THEN*
•IF* +(I-5)=25 * THEN *
•IF* 25= (I - 5) 'THEN*
BOOL:=+(®IF* B ° THEM * 5 ‘ELSE* 6>»X;

2. (2) NO SWITCHES.
A CONDITIONAL STATEMENT CAN OFTEN DO THE SAME JOB, BUT
IT IS POSSIBLE TO WRITE A . PROCEDURE WHICH ACTS AS A SWITCH.
FOR EXAMPLE, • SWI TCH 9 Slt»L 1,L2, S2C.3JJ
IS EQUIVALENT. TO
•PROCEDURE*. SIC INDEX),* *VALUE* INDEX; ’INTEGER* INDEX;
•IF* INDEX*1 ‘THEN*‘GOTO’ LI ’ELSE*‘IF* INDEX=2 ’THEN*
•GOTO* L2 ’ELSE* * IF* INDEX=3 •THEN* S2(3),*
IN THIS EXAMPLE, S2 WOULD BE ANOTHER “SWITCH PFvOCEDURE".
INSTEAD OF • GOTO * SlCI);, S1(I); WOULD BE WRITTEN.

3. (I) NO MULTIPLE ASSIGNMENTS.

4. (1). IN •FOR* STATEMENTS, THE CONTROLLED VARIABLE MUST
BE UNSUBSCRIPTED.

5. THE RESULT OF AN t OPERATION IS ALWAYS REAL.
ACCORDING TO THE ALGOL 60 REFORT, THE TYPE OF THE RESULT OF AN
INTEGERtINTEGER OPERATION IS NOT KNOWN UNTIL RUN TIME, AS
IT DEPENDS ON THE SIGN OF THE SECOND INTEGER.

9

6. (2) NO OWN VARIABLES.
DECLARE THE VARIABLES IN THE OUTER BLOCK. THIS HAS
EXACTLY THE SAME EFFECT, EXCEPT IN THE CASE OF OWN ARRAYS
VITH DYNAMIC BOUNDS, OR IF THE IDENTIFIERS ARE REDECLARED
IN AN IMN ER BL 0 CK. _ . v

7. (1) THE COMPILER MUST BE ABLE TO INFER THE TYPE OF A
PROCEDURE ACTUAL PARAMETER, AT THE TIME IT IS COMPILED.

IN GENERAL, VHEN A PROCEDURE IS CALLED, NEITHER THE TYPE
OF THE ACTUAL NOR FORMAL PARAMETER WILL BE KNOWN. SUPPOSE
THE ACTUAL PARAMETER I S AN UNDECLARED IDENTIFIER, AND THE
PROCEDURE BEING CALLED HAS NOT BEEN DECLARED EITHER. THE
UNDECLARED IDENTIFIER MAY BE A TYPE PROCEDURE, BUT EVEN IF
THIS IS KNOWN THF, COMPILER DOES NOT KNOW WHETHER TO SET ITS
ADDRESS AS THE PARAMETER (IF THE FORMAL IS A PROCEDURE)
OR WHETHER TO ENTER IT AMD WORK OUT ITS VALUE (IF THE FORMAL
IS A VARIABLE). OBVIOUSLY, IN A ONE PASS COMPILER, THE TYPE OF
AN ACTUAL PARAMETER MUST BE KNOWN AT THE TIME IT IS COMPILED.

ROGALGOL USES THE FOLLOWING CONVENTIONS TO GIVE THE COMPILER
THIS IN FORM ATI ON.

(A) THE COMPILER IS INFORMED IF THE ACTUAL PARAMETER IS A LABEL
OR PROCEDURE BY PREFIXING THE NAME OF THE LABEL OR PROCEDURE
VI TH A TYPE DECLARATION. EXAMPLE:

FREDC 'LABEL* LI, ‘REAL * 'PROCEDURE * RP, 2.345)5
DESIGNATIONAL EXPRESSIONS ARE ALLOWED AS PROCEDURE PARAMETERS,
FOR EXAMPLE:

FREDC ‘LABEL "IF' X=5 ’THEN9 LI *EL SE * L2)5
THIS PREFIXING IS DONE ONLY WHEN THE PROCEDURE IS CALLED,
THE DECLARATION OF A PROCEDURE IS STANDARD ALGOL-60.

(B) IF THE PARAMETER IS NOT SO PREFIXED, THE TYPE IS TAKEN TO
BE REAL, INTEGER, BOOLEAN, STRING OR AN ARRAY, AS DEDUCED FROM
THE FIRST SYMBOL OR IDENTIFIER OF THE PARAMETER.

<C) AN IDENTIFIER OCCURING AT THE START OF A PROCEDURE ACTUAL
PARAMETER MUST HAVE BEEN DECLARED. THE TYPE OF THE
PARAMETER WILL BE THE TYPE OF THE IDENTIFIER, UNLESS IT
IS AN ARRAY NAME FOLLOWED BY C. IF THE IDENTIFIER STARTS AN
ARITHMETIC EXPRESSION, THE TYPE MAY CHANGE FROM INTEGER
TO REAL, BUT THE COMPILER CANNOT CHANGE THE TVPE TO BOOLEAN
IF A RELATIONAL EXPRESSION IS USED.

(D) ANY OTHER SYMBOL WILL CAUSE THE COMPILER TO ASSUME AN
ARITHMETIC EXPRESSION FOLLOWS, EXCEPT THE SYMBOLS *NOT*, ‘TRUE*
AND ‘FALSE*, IN WHICH CASE IT IS ASSUMED TO BE A BOOLEAN
EXPRESSION, OR WITH ”, IN WHICH CASE IT IS A STRING PARAMETER.

YOU CAN FORCE THE COMPILER TO ACCEPT ANY PARAMETER YOU
WANT BY STICKING TO THE LETTER OF THIS RESTRICTION, AND
GIVING IT A ”CLUE”. E.G. TO USE A CONDITIONAL BOOLEAN
EXPRESSION YOU COULD USE ‘FALSE “OR‘ (REQUIRED EXPRESSION),
AND TO USE AN UNDECLARED REAL PROCEDURE 0. 0+NAME.
THE FIRST OF THESE WILL ADD ONLY ONE WORD TO THE CODE,

THE SECOND FOUR OR 4.5 WORDS.

8. (1,2) PROCEDURE PARAMETERS OF TYPE ’INTEGER*, ’BOOLEAN *
AND ’REAL* MUST EE CALLED BY VALUE, AND ALL OTHERS BY NAME.

IN MOST CASES THE PARAMETER CALLED BY NAME WOULD BE USED
FOR STORING A RESULT, I. E. IT IS AN OUTPUT NAME. ASSI GNED TO

‘WITHIN THE PROCEDURE, AND THE VALUE IS PI CKED UP AFTER
THE PROCEDURE IS FINISHED. THIS USE CAN BE SIMULATED
BY USING VARIABLES DECLARED OUTSIDE THE PROCEDURE FOR THE
OUTPUT PARAMETERS. MORE COMPLICATED USES CAN OFTEN BE
SIMULATED BY USING AN ARRAY WITH ONE ELEMENT INSTEAD
OF A SIMPLE VARIABLE CALLED BY NAME.

WHERE A NAME PARAMETER IS USED TO SUPPY INFORMATION TO
THE PROCEDURE, IT IS BECAUSE SIDE EFFECTS ARE REQUIRED TO
MAKE USE OF (FOR EXAMPLE) JENSEN’S DEVICE. IN THESE CASES
A FULL COMPILER WOULD GENERATE AS THE ACTUAL PARAMETER THE
ADDRESS OF THE ROUTINE WHICH MUST BE OBEYED TO WORK OUT
THE PARAMETER. THIS USE CAN BE SIMULATED BY SUPPYING THE
NAME OF A TYPE PROCEDURE, TO ICH CAN BE DECLARED LOCALLY.
SUPPOSE THE CODE IS REQUIRED TO HAVE THE EFFECT:
PC AC 13), WHERE THE PARAMETER I S CALLED BY NAME. IF THE PROCEDURE
NEEDS TO FETCH THE PARAMETER ONLY, THIS CAN .BE WRITTEN:
•BEGIN’’REAL’’PRO CEPURE* DUMMY; DUMMY:=AC I 3 ;
PC’REAL” PROCEDURE’ DUMMY);
•END’,*
IN THE PROCEDURE BODY OF P, THE NAME OF THE FORMAL PROCEDURE
REPLACED IN THE CALL BY DUMMY WOULD BE USED IN JUST THE
SAME WAY AS THE NAME OF A REAL PARAMETER CALLED BY NAME
WOULD BE USED.

9. (2) STANDARD PROCEDURE NAMES CANNOT BE USED AS FORMAL
PROCEDURES. FOR EXAMFLE PC • REAL ’ ’ PRO CEDURE * COS) IS NOT
ALLOWED. A DUMMY PROCEDURE MUST BE DECLARED TO EVALUATE COS,
FOR EXAMPLE: .
•REAL’’PRO CEDURE’ CO SI NECX) i * VALUE’X; • REAL ’X; CO SINE: = CO S(X)I
PC’REAL” PRO CEDURE’ COSINE) IS ALLOWED.
OF COURSE, STANDARD FUNCTIONS MAY BE USED WHEN THE PROCEDURE
PARAMETER IS A NUMERICAL VALUE, THE RESTRICTION APPLIES
ONLY WHEN THE FORMAL PARAMETER ISA PROCEDURE.
FOR EXAMPLE, SINCCOSC1)) IS ALLOWED.

10. Cl) VARIABLES MUST BE DECLARED BEFORE THEY ARE USED. IF
THEY ARE NOT, THE COMPILER WILL ASSUME THAT THE UNDECLARED
IDENTIFIER IS A FUNCTION (TYPE PROCEDURE) OR ORDINARY
PROCEDURE, ACCORDING TO CONTEXT. THEREFORE, IF A NON-LOCAL
VARIABLE IS USED INSIDE A PROCEDURE, THE DECLARATION OF THE
VARIABLE MUST COME BEFORE THE DECLARATION OF THE PROCEDURE.
IF, WHHI AN ASSUMED PROCEDURE- IS ACTUALLY DECLARED, IT IS NOT
OF THE SAME TYPE AS THAT EXPECTED EARLIER, A FAIL 2 WILL
OCCUR, EVEN IF A PROCEDURE OF THE TYPE ACTUALLY DECLARED
COULD HAVE BEEN LEGALLY USED.

C

11. ONLY THE FIRST 6 CHARACTERS OF AN IDENTIFIER ARE
SIGNIFICANT. THIS IS BECAUSE OF THE LIMITED SPACE AVAILABLE

FOR THE COMPILER’S IDENTIFIER TABLES.

12. (2) THE BOOLEAN OPERATOR ’IMPLIES* IS NOT AVAILABLE.
A ’ IMFL.IES* B IS THE SAME AS ’NOT’(A ’AND* ’NOT’B).

13. (1) IN THE FOLLOWING EXAMPLE, THE ’GOTO* Li STATAMENT WILL
REFER TO THE FORMAL LABEL, NOT THE LABEL DECLARED AFTER THE
•GOTO’. THIS IS NOT CORRECT ALGOL. THE REASON IS THAT JUMPS
TO FO'RMALS ARE HANDLED DIFFERENTLY FROM ORDINARY JUMPS, AND
THE COMPILER MUST DECIDE AT THE ’GOTO’ VHICH TYPE TO COMPILE.
FORMAL AND LOCAL LABELS MAY BE MIXED IN A DESIGNATIONAL
EXPRESSION (SEE * IN THE EXAMPLE).

•PROCEDURE! XXXCDi ’LABEL’ Li - *
•BEGIN* Sli S2i

•GOTO* Li
S3;
•GOTO”IF» B ’THEN’ L ’ELSE’ L2i ’COMMENT* *i

Lt . S4i_
L2: . S5i
•end*;

THE SAME APPLIES TO FORMAL PROCEDURES.

14. (2) NO INTEGER LABELS. MOST COMPILERS HAVE THIS RESTRICTION

15. (2) PARAMETER DELIMITERS OF THE TYPE ")STRING:<” ARE NOT
ALLOWED. COMMAS SHOULD BE USED.

16. FUNCTION DESIGNATORS CANNOT BE USED AS A PROCEDURE
STATEMENT, SO i COS(X)i IS ILLEGAL. THIS COULD EASILY
BE IMPLEMENTED BUT AN EXTRA VARIABLE WOULD BE NEEDED IN THE
MAIM PROGRAM. USERS CAN DECLARE THEIR OWN DUMMY VARIABLE TO
ASSIGN TO IF THEY WANT TO THROW AWAY THE RESULT OF A FUNCTION.

THE COMPILER

COMPILER OUTPUT FORMAT

THIS IS NOT REQUIRED INFORMATION FOR USING THE COMPILER.

THE COMPILER OUTPUT IS ‘IN ASCII FORMAT, AND IS COMPATIBLE
WITH MACRO. IT CONSISTS OF FOUR SORTS OF ITEM.
(1) 6 BIT INSTRUCTION CODES. THESE ARE PACKED TWO TO A
WORD, AND ARE OUTPUT AS SIGNED DECIMAL NUMBERS. ■
(2) LABEL ADDRESSES. THESE ARE THE LETTER L FOLLOWED BY
A DECIMAL NUMBER. THE LOADER REPLACES THESE SYMBOLIC
ADDRESSES BY THEIR BINARY EQUIVALENTS.
(3) FLOATING POINT LITERALS. THESE HAVE THE FORM
FLTGi - 1.23E-4J DECIMAL, • I F NO FLOATING POINT LI TERALS
(I.E. ONES CONTAINING . OR E> ARE WRITTEN IN THE ALGOL
SOURCE, THE COMPILER OUTPUT IS ALSO COMPATIBLE WITH PAL.
(A) LABEL DEFINITIONS. THESE ARE EITHER A LABEL (AS (2))

FOLLOWED BY A COMMA, OR ELSE A DEFINITION OF THE FORM
L111=X. X MAY BE A CONSTANT OR ANOTHER PREVIOUSLY
DEFINED LABEL.
EACH ITEM IS OUTPUT ON A NEW LINE.

IT IS NOT NORMALLY NECESSARY TO ASSEMBLE THE ALGOL COMPILER
OUTPUT INTO BINARY, BECAUSE THE LOADER IN THE RUN-TIME
SYSTEM, CAN PUT IT STRAIGHT INTO MEMORY. HOWEVER, IT MUST BE
COMPILED IF THE ALGOL SOURCE CONTAINS MACHINE CODE
INSTRUCTIONS (SECTION 2. A).

RUNNING THE COMPILER

THE COMPILER ISA SINGLE BINARY TAPE. IT CAN BE LOADED
BY ANY BINARY LOADER, AS THE LAST PAGE OF EACH MEMORY
FIELD IS UNUSED. START THE COMPILER AT LOCATION 00200.
A HEADING WILL BE TYPED, FOLLOWED BY THE QUESTION
OUTPUT- . ANSWER WITH AN INTEGER BETWEEN 0 AND 3. (BUT
SEE ALSO A LATER PARAGRAPH ABOUT THE SYMBOL TABLE).
THIS IS THE DEVICE NUMBER FOR OUTPUT. IF DEVICE
3 IS SPECIFIED, THE COMPILER WILL ASK FOR FILENAMES AS
DESCRIBED IN SECTION 6. THE COMPILER WILL THEN TYPE INPUT-,
TYPE IN THE INPUT DEVICE NUMBER. IF YOU ARE COMPILING FROM
THE HIGH SPEED READER, THE TAPE SHOULD BE LOADED BEFORE THE
COMPILER IS STARTED.

AT THE END OF COMPILATION, THE SIZE OF THE COMPILED CODE
IN DECIMAL WILL BE TYPED* THE CODE STARTS AT 00202
SO THIS MUST BE ADDED TO OBTAIN THE ADDRESS OF THE NEXT
FREE LOCATION IN FIELD 0. ADDITIONALLY, THE NUMBER OF
WORDS OF MACHINE CODE (IF ANY) MUST BE ADDED, SINCE THE
COMPILER DOES NOT COUNT THEM.
A NEGATIVE SIZE OF PROGRAM MEANS THAT THE SIZE IS GREATER
THAN 2047. THE CORRECT SIZE IS 4096+(SIZE PRINTED).

THE COMPILER MAY BE INSTRUCTED TO PRINT ITS SYMBOL TABLE BY
GIVING AM OUTPUT DEVI CE NUMBER GREATER THEN 9. THE UNI TS
DIGIT WILL BE TAKEN AS THE ACTUAL DEVICE NUMBER. OUTPUT-12
WILL SEND THE OUTPUT TO THE HIGH SPEED PUNCH AND CAUSE THE
TABLE TO BE PRINTED ON THE TELETYPE. THE TABLE ISA LIST OF
DECLARED IDENTIFIERS, EACH ONE FOLLOWED BY 3 NUMBERS GIVING
INFORMATION ABOUT IT.

THE FIRST IS EITHER THE VARIABLE NUMBER, GIVING THE POSITION
OF THE VARIABLE IN THE STACK RELATIVE TO THE POINTER IN 10022
(SEE 2.4), OR IT IS TOE LABEL NUMBER ASSI GNED TO A LABEL
OR PROCEDURE.

THE SECOND NUMBER IS THE PROCEDURE NUMBER OF THE ENCLOSING
PROCEDURE IN WHICH THE IDENTIFIER IS DECLARED. THE MAIM PROGRAM
IS 0, AND PROCEDURES ARE NUMBERED SERIALLY AS THEY ARE
ENCOUNTERED, REGARDLESS OF DEPTH OF DECLARATION. AS AN
EXCEPTION, TOE ACTUAL NUMBER OF A PROCEDURE IS PRINTED,
INSTEAD OF THE NUMBER OF TOE ENCLOSING PROCEDURE.

13

THE THIRD NUMBER IS THE TYPE OF THE IDENTIFIER.

0 PROCEDURE FORMAL PARAMETER (TYPE NOT KNOWN YET)
1 REAL
2 INTEGER
3 BOOLEAN
5 REAL ARRAY
6 INTEGER ARRAY

. 7 BOOLEAN ARRAY

.10 PROCEDURE
11 REAL PROCEDURE
.12 INTEGER PROCEDURE
13 BOOLEAN PROCEDURE

;

WHEN THE COMPILER HAS FINISHED, t WILL BE TYPED. THE COMPILATION
CAN BE INTERRUPTED BY TYPING CTRL/S, WHICH WILL ALSO LEAD TO t.
CTRL/P WILL START THE COMPILER AFRESH, CTRL/C WILL RETURN TO
MONITOR. CTRL/P AND CTRL/C CAN BE TYPED AT ANY TIME.

COMPILER ERROR MESSAGES

FAIL X ON LINE Y I DENT 2 SYMBOL S.

X IS THE FAILURE NUMBER (SEE BELOW), Y THE LINE ON WHICH IT
OCCURRED, Z THE LAST IDENTIFIER READ, AND S THE DECIMAL
VALUE OF THE LAST SYMBOL.

COMPILATION CONTINUES AFTER AN ERROR IS FOUND, BUT THERE
MAY BE SOME FALSE ERROR MESSAGES AFTER AN I MI TIAL CO RRECT
ONE. COMPILER OUTPUT IS SWITCHED OFF.

1. IDENTIFIER DECLARED TWICE IN SAME BLOCK.
2. UNDECLARED IDENTIFIER.
3. NO C AFTER ARRAY NAME, EXCEPT AS A PROCEDURE PARAMETER,

OR ORDINARY PROCEDURE USED AS A FUNCTION.
4. NO 3 AT END OF SUBSCRIPT LIST.
5. MORE THAN 63 VARIABLES IN MAIN PROGRAM OR A PROCEDURE.
6. NO S AT END OF PROGRAM. (TOO MANY • END* S) •
7. NO ’ELSE’ PART OF CONDITIONAL ARITHMETIC EXPRESSION. '
8. DITTO. BOOLEAN OR DESIGNATIONAL EXPRESSION.
9. RELATIONAL OPERATOR NOT FOUND WHERE EXPECTED. MAY OCCUR
IF RESTRICTION 1 IS IGNORED.

10. ARITHMETIC PRIMARY -DOES NOT START WITH +,-,.,(,
.DIGIT OR IDENTIFIER.
11. % (INTEGER DIVIDE) DOES NOT HAVE TWO INTEGER OPERANDS.
12.) MISSING IN ARITHMETIC EXPRESSION.
13. CONTROLLED VARIABLE IN *FOR* IS UNDECLARED OR SUBSCRIPTED.
.14.) MISSING IN BOOLEAN OR DESI GNATI ONAL EXPRESSION.
15. MORE THAN 140 IDENTIFIERS IN SCOPE AT ONCE.
16. STATEMENT STARTS INCORRECTLY. IF THIS OCCURS AT THE
.TERMINATING DOLLAR, IT MEANS THERE ARE NOT ENOUGH ‘END'S.
17. UNDECLARED OR UNSUITABLE IDENTIFIER ON LEFT OF
18. ARRAY DECLARATION FAULTY.
19. TYPE SPECIFICATION OF ACTUAL PARAMETER IS NOT 'LABEL*,

14

•PROCEDURE*, ’REAL* ’PROCEDURE*, ’BOOLEAN * * PROCEDURE* OR
•INTEGER*’PROCEDURE* .

20. WRONG NUMBER OF SUBSCRIPTS. IN THE CASE OF FORMAL ARRAYS,
THIS ERROR CANNOT BE DETECTED UNTIL RUN TIME.

21. NO > AFTER ACTUAL PARAMETER LIST.
22. * FOR* STATEMENT ELEMENT NOT TERMINATED BY , OR *DO*.
23. PROCEDURE BODV NOT DELIMITED BY I.
24. :~«NOT FOUND WHERE EXPECTED.
25. NO ’THEN* AFTER *IF*.
26. ’VALUE’ SPECIFICATION IS NOT THE FIRST SPECIFICATION OF

PROCEDURE FORMAL PARAMETERS.
27. $ IN MIDDLE OF PROGRAM. (TOO MANY ’BEGIN * S,

OR UNMATCHED OR *).
2S. PROCEDURE FORMAL PARAMETER LIST NOT ENDED BY) .
29. PARAMETER SPECIFIED TWICE, OR IS.NOT IN FORMAL LIST,

OR SPECIFICATION NOT TERMINATED BY ,* .
30. LABEL/PROCEDURE LIST FULL.
31. 'UNTIL* NOT FOUND WHERE EXPECTED.
32. NO (AFTER NAME OF STANDARD PROCEDURE.
33. ’THEN* FOLLOWED IMMEDIATELY BY *IF*.
34. PROCEDURE ACTUAL PARAMETER STARTS WITH UNDECLARED IDENTIFIER
35. FUNCTION OR VARIABLE USED AS PROCEDURE.
33. ARITHMETIC EXPRESSION CONTAINS BOOLEAN VARIABLE IN

ILLEGAL CONTEXT.
39. PARAMETER SPECIFIED VALUE IS NOT IN FORMAL LIST.
40. PARAMETER SPECIFICATION NOT COMPLETE.
41. SIMPLE VARIABLE NOT CALLED BY VALUE, OR OTHER PARAMETER

TYPE NOT CALLED BY NAME.
42. INPUT/OUTPUT PROCEDURE CALL ERROR.
44. INTEGER LITERAL NOT IN RANGE +-2047.

COMPILER CORE MAP

FIELD 0

0-1577 INTERPRETER
1600-2777 VARIABLES, WORKING STACK
3000-5477 ARRAYS (MAINLY IDENTIFIER TAELES)
5500-7577 FREE, BUT OCCUPIED BY SYSTEMS DEVICE HANDLER

AT MANY INSTALLATIONS, SEE SECTION 6.

FIELD 1

1-7577 COMPILER CODE. THIS IS A CODE VERY SIMILAR TO THE
ONE LISTED IN SECTION 9.

ORDER OF COMPILER OVERLAYS

BOTH THE SYSTEMS DEVICE OVERLAY AND TOE EAE OVERLAY PATCH
THE INTERPRETER. THE 16K PATCH CHANGES THE COMPILER CODE IN
FIELD 1. TOE CORRECT ORDER OF LOADING IS THEREFORE:

1. INTERPRETER

2 (A) EAE OVERLAY
(B) SYSTEM OR HIGH SPEED PAPER TAPE INTERRUPT OVERLAYS
<C> COMPILER CODES

THE ORDER OF LOADING A, B AND CIS IMMATERIAL.
THE BASIC COMPILER PAPER TAPE SUPPLIED CONTAINS ITEMS ,
1 AND 2CC).
3. 16K OVERLAY

THERE* IS NO MODIFICATION TO THE COMPILER IN THE I2K SYSTEM.

THE RUN-TIME SYSTEM

THE RUN-TIME SYSTEM IS A SINGLE BINARY PROGRAM. IT
INCLUDES THE LOADER AND THE FLOATING POINT PACKAGE, AND
MAY INCLUDE A SYSTEM DEVICE HANDLER.
IT CAN BE LOADED WITH ANY ABSOLUTE BINARY LOADER, AND ITS
STARTING ADDRESS IS 00200,

LOADING AND RUNNING A COMPILED PROGRAM

TO RUN A PROGRAM WHICH HAS NOT BEEN COMPILED INTO BINARY,
LOAD THE RUM-TIME SYSTEM AND START AT 200 IN FIELD 0.
IT WILL TYPE IN- . ANSWER VITH A DEVICE NUMBER l TO 3.
IF 3 IS ANSWERED, IT WILL ASK FOR THE INPUT FILE NAME
AS IS EXPLAINED IN SECTION 6.
WHEN LOADING IS COMPLETED, THE NEXT FREE LOCATION IN
FIELD 0 WILL BE TYPED IN OCTAL, FOLLOWED 3Y t. TYPE
CTRL/P TO EXECUTE THE PROGRAM, AND CTRL/C TO RETURN TO
MONITOR. THE LOADER STARTS ITS TABLES IN FIELD 1 AT THE ADDRESS
IN 10600. SHOULD IT BE NECESSARY TO RESTART THE LOADER, THIS
MUST BE DONE AT LOCATION 14000. THE LOCATIONS FROM 00200 WILL
ALREADY BE CHANGED IF THE LOADER WAS STARTED. IF THE PROGRAM
ITSELF IS STARTED, THE LOADER MAY BE DESTROYED.

TO RUN A PROGRAM WHI CH HAS BEEN COMPILED INTO BINARY,
THE BINARY TAPE IS SIMPLY LOADED AFTER THE RUN-TIME
SYSTEM, AND THE MACHINE STARTED AT 00200.

CTRL/S, CTRL/P AND CTRL/C WORK IN THE SAME WAY AS IN THE
COMPILER. ADDITIONALLY,- THE PROGRAM MAY BE RESTAP.TED AFTER
CTRL/S BY CTRL/R. THE PROGRAM WILL NOT RUN CORRECTLY IF
CTRL/S WAS USED TO INTERRUPT A WAIT ON THE HIGH SPEED
READER OR TELETYPE, BECAUSE THE NEXT CODE IN LINE WILL BE
OBEYED WITHOUT THE CODE RESPONSIBLE FOR THE READ BEING
FINISHED. OUTPUT TRANSFERS AND SYSTEMS DEVICE TRANSFERS
CANNOT BE INTERRUPTED BY CTRL/S.

OPERATING CHARACTERISTICS

THE VARIABLES ARE NOT SET TO ZERO WHEN THE RUN-TIME SYSTEM

16 -

IS STARTED. MAIN PROGRAM OUTER BLOCK VARIABLES, INCLUDING
ARRAYS, WILL REMAIN UNCHANGED AND ACCESSIBLE IF THE
PROGRAM IS RE-STARTED AFTER CTRL/S OR CTRL/P. THIS FEATURE
CAN BE USED IN A PROGRAM WHICH USES THIS DATA IN DIFFERENT
WAYS. A SUB-PROGRAM CAN BE. CHOSEN BY AM OPTION QUESTION
AT THE BEGINNING OF THE PROGRAM, WHICH WILL BE ASKED EVERY
TIME CTRL/P IS TYPED.

THERE IS NO CHECKING FOR ARRAY SUBSCRIPTS OUT OF BOUNDS,
OR THAT THE UPPER DECLARED BOUND OF AN ARRAY SUBSCRIPT
IS GREATER THAN THE LOWER BOUND.

THERE ARE ABOUT 1160 (DECIMAL) LOCATIONS AVAILABLE FOR VARIABLES
AND ARRAYS. REAL ELEMENTS OCCUPY 3 WORDS, AND INTEGERS AMD
BOOLEANS ONE. THERE IS AN OVERHEAD OF 3 WORDS FOR EVERY
ACTIVE DEPTH OF ARRAY DECLARATION (I . E. WHEN AN INNER
BLOCK WHICH CONTAINS AN ARRAY DECLARATION IS ACTUALLY
ENTERED - THE SPACE IS GIVEN BACK WHEN THE ELOCK IS LEFT).
EACH ARRAY CARRIES AN OVERHEAD OF ONE WORD PLUS TWICE
THE NUMBER OF SUBSCRIPTS. FOR EXAMPLE, A BLOCK IN WHICH
ONE ARRAY IS DECLARED, HAVING THREE SUBSCRI PTS, HAS AN
OVERHEAD OF TEN WORDS.

RUN-TIME SYSTEM FAILURES.

THE MESSAGE IS ? DDDD, WTHERE DDDD IS THE LOCATION IN
THE RUN-TIME SYSTEM AT WHICH THE ERROR WAS DISCOVERED.
FOR THIS REASON, THE FOLLOWING NUMBERS MAY CHANGE SLIGHTLY.
TAKE THE NEAREST ONE.
t IS TYPED AFTER A FAILURE. ANSWER CTF1,/C OR CTRL/P AS AFTER
A SUCCESSFUL RUN.

202. NO INTERPRETIVE CODE OR LOADER PRESENT.
564. VARIABLE/ARRAY SPACE USED UP
465. ACTUAL NUMBER OF PARAMETERS DIFFERENT FROM

NUMBER OF FORMAL S.
516. ACTUAL AND FORMAL PARAMETERS INCOMPATIBLE.
.THE ONLY POSSIBLE CONVERSIONS ARE BETWEEN INTEGER AND PEAL.
1002. ATTEMPT TO READ FROM DEVICE 3 WHEN SYSTEMS DEVICE
.ROUTINES ARE ABSENT.
.1471. FLOATING POINT ERROR, PROBABLY DIVIDE BY ZERO.
.1530. ERROR IN STANDARD FUNCTION OR EXPONENTIATION.
1616. WTRONG NUMBER OF SUBSCRITS FOR FORMAL ARRAY. IS
FREQUENTLY CAUSED BY USING ARRAY SUBSCRIPTS OUT OF BOUNDS.
2002. ATTEMPT TO WRITE TO DEVI CE 3 WHEN SYSTEMS DEVI CE

ROUTINES ARE ABSENT.
2201. ATTEMPT TO DO DISKO WHEN SYSTEMS ROUTINES
ARE ABSENT.
2460, 2463. DEVICE NUMBER NOT IN RANGE 0-7.
2465. DEVICE NOT AVAILABLE.

LOADER FAILURES.

THESE USUALLY INDICATE AN INTERNAL SYSTEMS FAILURE,

SINCE THE COMPILER IS SUPPOSED TO OUTPUT LEGAL LOADER
CODE. A FAILURE WILL RESULT IF AN ATTEMPT IS MADE TO
LOAD MACHINE CODE, IF THE ALGOL PROGRAM I S SO LONG
THAT IT LOADS BEYOND THE LOCATION ADDRESSED BY 14200, OR
IF IT CONTAINS TOO MANY LABELS FOP. THE LOADER.

4042. NEGATIVE DEVICE CODE.
’ 4045., DEVI CE C0DE>3.
4l07.'lTE-l TO BE LOADED DOES NOT START WITH DIGIT, -,
L, V OR F.
4204. L NOT FOLLOWED BY A DIGIT.
4225. LABEL (E.G. L24 > NOT FOLLOWED BY , CR/LF OR ».
4243. FORWARD REFERENCE LIST FULL. COMPILER OUTPUT

MUST BE ASSEMBLED BY MACRO.
4335. ATTEMPT TO LOAD BEYOND LOCATION ADDRESSED BY 14200.
IF THE SYSTEMS DEVICE ROUTINES ARE NOT NEEDED, ALTHOUGH
PRESENT, THE COMPILED CODE CAN BE LOADED ON TOP OF
THEM. PUNCH THE CODE ONTO PAPER TAPE, PATCH 14200 TO
7577 AND..LOAD FROM PAPER TAPE.

427 i. LXX= NOT FOLLOWED BY L OR DIGIT.
427 5. LXX--LYY... WHERE LYY HAS NOT BEEN DECLARED.
4546. SYSTEM DEVICE ROUTINES NEEDED BUT NOT PRESENT.
4552. TOO MANY LABELS. PROCEED AS FOR 4245.

4.4 RUN-TIME SYSTEM CORE MAP

FIELD 0

0-27 FREE
30- 177. RESERVED FOR SYSTEM
200-7577 COMPILED ALGOL PROGRAM

THE TOP END OF THIS SPACE IS OCCUPIED BY THE SYSTEM
DEVICE HANDLER, WHEN PRESENT. SEE SECTION 6.

FIELD l

0-2477.INTERPRETER
2500-4755 VARIABLE AND ARRAY STACK
THE 12K.OVERLAY (IF PRESENT) OCCUPIES LOCATIONS 2500-2577
4756-7577 FLOATING POINT PACKAGE

4.5 ARAY STORAGE - WARNING

TO SAVE TIME AND SPACE, THE RUM-TIME SYSTEM CHECKS NEITHER
FOR SUBSCRIPTS OUT OF BOUNDS NOR THAT THE UPPER BOUND
IS GREATER THAN THE LOWER BOUND WHEN AN ARRAY I S DECLARED.
THE MOST FREQUENT MISTAKE 13 TO OVERRUN THE DECLARED BOUNDS,
AND THIS MAY CAUSE 7 1616. HOWEVER, IN GENERAL THE EFFECT
OF MISUSING ARRAYS IS UNPREDICTABLE, AND IF A PROGRAM IS
NOT BEHAVING IN THE WAY EXPECTED, THIS IS THE FIRST AREA
IN WHICH MISTAKES SHOULD BE SOUGHT.

4. 6 ORDER OF RUM-TIME SYSTEM OVERLAYS

18

THE INTERPRETER OVERLAYS SOME INSTRUCTIONS IN THE FLOATING
POINT PACKAGE.
THE SYSTEMS DEVICE OVERLAY PATCHES LOCATION 14200 IN THE
LOADER (LAST FREE LOCATION IN FIELD. 0).
THE 12K OVERLAY PATCHES LOCATION 10600 (ADDRESS OF START
OF STACK) WHICH IS ALSO USED BY THE LOADER AS THE STARTING
ADDRESS OF ITS TABLES.
THE 16K OVERLAY CHANGES CDF INSTRUCTIONS IN BOTH THE
LOADER AND THE INTERPRETER.
USER OVERLAYS MAY WELL OVERWRITE BOTH 10600 AND 14200.

THE CORRECT ORDER FOR LOADING THE COMPONENTS IS THEREFORE:

1. FLOATING POINT PACKAGE (EAE OR NON-EAE VERSION AS REOUI RED)
2. INTERPRETER
3. LOADER

THE BASIC PAPER TAPE SUPPLIED CONSISTS OF ITEMS 2 AND 3.
4. EAE PATCH IF WEEDED
5. SYSTEMS DEVICE OVERLAY
6. 12K OVERLAY AND 16K OVERLAY IN EITHER ORER
7. USER OVERLAYS

INPUT/OUTPUT DEVICE HANDLERS.

THE DEVICE NUMBER MECHANISM

THE INPUT AND OUTPUT ROUTINES LOOK UP THE ADDRESS OF THE
ROUTINE TO TRANSFER TO/FROM ANY DEVICE NUMBER IN A TABLE.
IN THE TAPES AS SUPPLIED, DEVICES 4 TO 7 ARE PRESET WITH
THE ADDRESS OF THE ERROR ROUTINE, AS IS INPUT DEVICE 0.
IN THE RUNTIME SYSTEM, DEVICE 3 IS A LINKING ROUTINE TO
GET INTO FIELD 0, WHERE THE SYSTEMS DEVICE HANDLERS ARE -
THIS WILL GIVE ITS OWN FAILURE INDICATION IF THERE ARE
NO ROUTINES PRESENT-

ADDING EXTRA DEVICES

ONE APPROACH IS TO WRITE MACHINE CODE STATEMENTS IN THE
ALGOL PROGRAM, AS DESCRIBED IN SECTION 2.4. HOWEVER, IT WILL
USUALLY BE MORE CONVENIENT TO BUILD THE ROUTINES INTO THE
RUN"TIME SYSTEM BY WRITING AN OVERLAY IN MACHINE CODE,
SO THAT THE ALGOL PROGRAM DOES MOT HAVE TO BE COMPILED BY
MACRO. THE CUSTOMISED OPERATING SYSTEM OR COMPILER MAY THEN
BE' SAVED ON THE SYSTEMS DEVICE, AND CALLED AS STANDARD.

TO WRITE YOUR OWN ROUTINES, SIMPLY PUT THE ADDRESS OF THE
ROUTINE IN THE APPROPRIATE PLACE IN THE TABLE. THE SYSTEM
WILL DO A "JMS I” THROUGH IT WHENEVER THAT DEVICE NUMBER
OCCURS IN AN ALGOL INPUT/OUTPUT ROUTINE.
FOR OUTPUT DEVICES, THE CHARACTER WILL BE IN THE
ACCUMULATOR. THERE IS NO NEED TO CLEAR THE ACCUMULATOR

19

BEFORE RETURNING. FOR INPUT DEVI CES, RETURN WITH THE
CHARACTER IN THE ACCUMULATOR.

THE WRITING OF SYSTEMS DEVICE OVERLAYS WILL BE DESCRIBED
IN SECTION 6.4. ALTHOUGH DEVICE 3 LEADS TO A LINKING ROUTINE
TO FIELD 0
YOU MAKING

IN THE STANDARD SYSTEM, THERE
DEVICE 3 INTO AN ORDINARY I/O

I S NOTHING
DEVI CE.

TO STOP

THE POSITION OF THE LISTS AND THE FREE SPACE AVAILABLE FOR
THE ROUTINES IS DIFFERENT IN THE COMPILER AND OPERATING
SYSTEMS.

ADDING DEVICES TO THE COMPILER

EVERYTHING. I S IN FIELD 0. THE INPUT DEVICE ROUTINE LIST
GOES FROM 1230 (DEVICE 0) TO 1207 (DEVICE 7), AND THE
OUTPUT LIST FROM 1210 (DEVICE 0) TO 1217 (DEVICE 7>J
THE SPACE FROM 5S00 TO 5777 (5677) IS FREE IF THE MONITOR (OS/8)
ROUTINES ARE USED, OTHERWISE THE SPACE UP TO 7577 IS
FREE. THERE IS NOTHING TO STOP YOU WRITING NEW ROUTINES FOR
DEVICES 1 TO 3.

FOR EXAMPLE, A NEW TELETYPE OUTPUT ROUTINE TO DO TLS FIRST
AND THEN WAIT FOR THF FLAG..

*1211; TTO /ADDRESS OF NEW ROUTINE TO TABLE
*5500 ...
TTO, 0; TLS; TSF: JMP .-1* JMP I TTO

THERE IS NO NEED TO CLEAR THE ACCUMULATOR.

ADDING DEVICES TO THE RUM-TIME SYSTEM

THE ROUTINES ARE IN FIELD 1. THE INPUT DEVICE LIST
STARTS AT 2400, AND THE OUTPUT DEVICE LIST AT 2410.
THERE IS NO SAFE SPACE IN FIELD ONE IN THE STANDARD SYSTEM,
BUT.IT CAN BE GENERATED. THE ROUTINES FINISH AT ABOUT 2470
(2577 IN 12K ROGALGOL), AND NORMALLY THE STACK IS BUILT FROM
THIS POINT UPWARDS. LOCATION 600 CONTAINS THE ADDRESS OF THE
FIRST LOCATION AVAILABLE FOR THE STACK, AND IF THIS IS
OVERWRITTEN, A HOLE BETWEEN THE ROUTINES AND THE STACK CAN
BE GENERATED. THERE IS MUCH FREE SPACE. IN FIELD 0, FROM
THE END OF THE COMPILED CODE TO 5777(5677) OR 7577, SO IT WOULD
BE ADVANTAGEOUS TO PUT LARGE ROUTINES IN FIELD 0,
HAVING ONLY A LINKING ROUTINE IN FIELD 1.
LOCATION 14200, WITHIN THE LOADER ROUTINE, CONTAINS
THE ADDRESS OF THE L AST. LO CATI ON WHICH IS AVAILABLE FOR
COMPILED CODE. THIS IS 7577 IN. THE LOADER ITSELF,
AND IS OVERWRITTEN BY 5777 (5677) WHEN THE MONITOR (OR 0 3/8)
HANDLERS ARE PRESENT. USERS CAN FURTHER OVERWRITE THIS
LOCATION TO RESERVE SPACE IN FIELD 0.
THE ADDRESS OF THE NEXT FREE LOCATION IN FIELD 0 IS HELD
IN 00175 AT RUN TIME.
THE EXAMPLE ILLUSTRATES ALL THESE POINTS.

20

FIELD 0
*5600
F0TTO, 0; tl s; tsf; jmp .- • l; cdf ci f 10; JMP I F0TTO

FIELD.!
*4200;

f • ’ • •

5577 /RESERVE SPACE IN FIELD .0
*600; . 2600 /RESERVE SPACE IN FIELD 1
* 2 411;. TTO /ADDRESS NEW ROUTINE OUTPUT DEVICE i
*2500
TTO, 0; CDF cif; JMS I . + 2; JMP i tto; F0TTO

THE INITIALISATION ROUTINE, ENTERED WHEN AN .ALGOL PROGRAM IS
STARTED, HAS THE INSTRUCTIONS RFC; TLS, PLS; KCC; STARTING AT
LOCATION 10640* TWO OF THESE INSTRUCTIONS MAY BE OVERWRITTEN
WITH JMP I .+ l; OWNIMIT5, TO INITIALISE OTHER DEVICES, PROVIDED
A RETURN IS MADE WITH THE OVERWRITTEN INSTRUCTIONS OBEYED
ELSEWHERE.

ALTHOUGH THE EXAMPLES ARE OF I/O ROUTINES, THE SAME
MECHANISM CAN BE USED TO OBEY ANY MACHINE CODE SEQUENCE.

SYSTEMS DEVICE HANDLERS

THE SYSTEMS DEVICE ROUTINES ENABLE ALGOL PROGRAMS (INCLUDING
THE COMPILER) TO READ AMD WRITE ASCII FORMAT PILES ON
SYSTEM ADDRESSABLE DEVICES AND FILES. ONCE IMF. FILES
HAVE BEEN INI TIALI SED, THEY ARE READ AND WRITTTEN BY THE
INPUT/OUTPUT PROCEDURES (SECTION 2.8) IN A SEQUENTIAL MANNER
JUST LIKE PAPER TAPE. DI SK I S THE STANDARD PROCEDURE WHI CH
‘IS USED TO OPEN, CLOSE AND REWIND FILES. ACTUAL DEVICE TRANSFERS
ARE ACTIVATED WHEN NECESSARY BY THE ORDINARY ROUTINES LIKE
READ, WRITE AND TEXT CALLED WITH THE DEVICE NUMBER 3.
SYSTEM DEVICE OUTPUT FILES ARE CLOSED BY SENDING CTRL/Z
TO THEM BY CHOUT(3, 1 54) .

DISK MONITOR ROUTINES.

THESE ROUTINES CAN ONLY HANDLE FILES ON THE DF32 SYSTEMS
DEVI CE.

1. DISK(l), OPEN INPUT ’FILE.

4 PAGES OF CORE ARE SAVED IN SCRATCH BLOCKS 372-375,
AND COMMAND DECODER IS CALLED INTO THE SAVED AREA. IT ASKS
ONLY *IN-. TYPE A LIST OF UP TO 5 FILES. CHAOS MAY RESULT
IF A DEVICE OTHER THAN THE SYSTEMS DEVICE IS SPECIFIED.
COMMAND DECODER TYPES + ON A NEW LINE, THE FILE IS OPENED FOR
READING. IF NO FILE NAME WAS TYPED, COMMAND DECODER IS
CALLED AGAIN.
IF AN INPUT FILE WAS SPECIFIED IN RESPONSE TO DISK(2), (SEE

BELOW), COMMAND DECODER IS NOT CALLED, AND THE PREVIOUSLY
SPECIFIED FILE IS OPENED.

■C.

21

2* DI SKC 2) • OPEN OUTPUT FILE.

COMMAND DECODER IS CALLED IN THE WAY DESCRIBED ABOVE. THIS
TIME *0’JT= AND *IN~ QUESTIONS ARE ASKED* THE OUTPUT FILE MUST
BE SPECIFIED, BUT. THE INPUT FILE NEED NOT. IF AN INPUT FILE
IS TYPED.* IT WILL BE OPENED BY A SUBSEQUENT DISK<1).

’ IF AN OUTPUT FILE IS NOT SPECIFIED, COMMAND DECODER WILL BE
CALLED AGAIN.
IF THERE WAS ALREADY AN ASCII FILE OF THE SAME NAME AS

THE NEW OUTPUT FILE, IT IS ERASED BEFORE ANY NEW
, CHARACTERS ARE SENT TO IT.

3. DI SKC 0) • REWIND INPUT FILE.

THIS REQUIRES NO TELETYPE RESPONSE. A FAILURE WILL OCCUR
IF THERE WAS NEVER A FILE OPEN.

4. DISKC3). SWOP INPUT AND OUTPUT FILES.

THIS WILL FAIL UNLESS THERE HAS BEEN BOTH AN INPUT AND A!
OUTPUT FILE OPEN. THE OUTPUT FILE MUST BE CLOSED BEFORE DOING
DI SK C 3) * THE PREVIOUS READING FILE WILL BE ERASED BY DISCC3).
THEREFORE, IF YOU DO NOT NEED TO READ A FILE AND THEN WRITE
ON IT, BUT JUST WRITE A FILE AND READ IT BACK, YOU MUST
GIVE A DUMMY NAME FOR THE INITIAL INPUT FILE, OR CLOSE
THE OUTPUT FILE AND OPEN IT FOR READING WITH DISKCI).

5. MONITOR ROUTINE ERRORS.

? 6226. HARDWARE READ ERROR.
7 6260. INPUT FILE EXHAUSTED.
? 6502. HARDWARE ERROR CALLING COMMAND DECODER.
7 7 022. DISKC3) WITH NO INPUT OPEN.
77025. DI SKC 3) WITH NO OUTPUT FILE SPECIFIED.
7 7 060. WRITE COMMAND WITH NO OUTPUT OPEN.
77066. HARDWARE WRITE FAILURE.
7 6065. HARDWARE ERROR ON SAM BLOCK TRANSFER.
76075. DISK FULL. ' - .
76116. HARDWARE ERROR ON SCRATCH BLOCK.

THE MONITOR ROUTINES CAN HANDLE ONLY ASCII FILES.
TOE FIRST FEW SYSTEMS DELIVERED CONTAIN A MONITOR ROUTINE
WHICH CANNOT DEAL WITH MULTI FLE INPUT FILES. LATER VERSIONS
WILL ACCEPT UP TO 5 INPUT FILE NAMES. THE NEXT FILE IN TOE
LIST WILL BE OPENED WHEN EITHER THE PREVIOUS FILE IS EXHAUSTED
OR DI SKC 1) IS EXECUTED AGAIN. IF THERE ARE NO MORE FILES
IN THE LIST AND DISKCl) IS DONE, COMMAND DECODER WILL BE
CALLED, BUT IF THE LAST FILE IN TOE LIST IS EXHAUSTED
76455 WILL OCCUR. DI SKC 0) WILL CAUSE THE FIRST FILE IN TOE
LIST TO BE REOPENED. DI SK C 2) WILL DESTROY ANY EXISTING INPUT
LIST, BUT WILL NOT AFFECT AN INPUT FILE WHICH IS ALREADY
OPEN. DI SK C 3) WILL CAUSE THE FIRST FILE IN TOE LIST TO
BECOME THE OUTPUT FILE. IF TOE END OF TOE OLD OUTPUT FILE
IS EXCEEDED ON READING AFTER DI SKC 3) THE RESULTS ARE
UNDEFINED. DI SKC 3) SHOULD THEREFORE BE USED WITH CAUTION.

22

FORM FEED (214) IS NOT TRANSMITTED TO THE PROGRAM* BUT
IF THE FILE WAS CREATED BY THE ALGOL SYSTEM END OF FILE
IS INDICATED BY CTRL/Z WHICH IS NOT SUPRESSED.

IF IT IS DESIRED TO REWIND TO THE BEGINNING OF THE INPUT
LIST EVEN WHEN NEW FILES HAVE BEEN OPENED EXPLICITLY BY
DISKCB* ALL OPEN INPUT INSTRUCTIONS EXCEPT THE FIRST
SHOULD BE DONE BY DISK(-2047) (*4001).

OS/8 ROUTINES

THESE ROUTINES WERE WRITTEN BY ALISTAIR VINDRAM* OF THE
AGRICULTURAL RESEARCH COUNCIL'S GRASSLAND RESEARCH INSTITUTE*
HURLEY* MAIDENHEAD* BERKS.

SCRATCH BLOCKS 40 AND 41 ARE USED BY THESE ROUTINES. THEY
CONTAIN CODE TO OPEN AND CLOSE FILES* WHICH IS CALLED INTO
THE BUFFER AREAS WHEN NEEDED. THE CODE IS TO I TTEN ONTO THE
SCRATCH BLOCKS AT THE FIRST USE OF THE SYSTEMS ROUTINES.
AN ALGOL PROGRAM USING THEM CANNOT BE SAVED AFTER IT HAS BEEN
STARTED* AS SOME OF THE CODE WILL NOT BE IN CORE. THIS INCLUDES
LOADING THE COMPILED CODE INTO MEMORY USING DEVICE 3* BECAUSE
THE LOADER USES THE SAME ROUTINES AS THE ALGOL PROGRAM.

COMMAND DECODER IS CALLED IN SPECIAL MODE* WHICH MEANS THAT
NO FILE EXTENSION IS ASSUMED. UNLIKE THE MONITOR SYSTEM* ANY
OS/8 DEVICE MAY BE USED* PROVIDED THAT ITS HANDLER OCCUPIES
ONE PAGE AND NOT TWO.

1. DISK(l).
THE ROUTINE TYPES “INPUT FILENAME? "* AND THEN CALLS

COMMAND DECODER. WAIT UNTIL COMMAND DECODER TYPES **
AND THEN TYPE A SINGLE FILE NAME* WHICH NEED NOT BE ON THE
SYSTEMS DEVICE.

2. DI SK(2). AS ABOVE BUT FOR OUTPUT FILES.

3. DI SK(0) • REWIND INPUT FILE* AS FOR MONITOR.

4. DI SK(3) . CLOSE OUTPUT FILE (IF NOT DONE ALREADY) AND
OPEN IT FOR READING.

5. OS/8 ROUTINE FAILURES.

7 5724. ATTEMT TO READ WITH FILE NOT OPENED* OR FILE ALREADY
. EXHAUSTED.
75735. FAILURE IN INPUT DEVICE HANDLER.
7 6020. ATTEMFT TO WRITE WITH NO FILE OPENED OR ALREADY CLOSED.
76056. SPACE AVAILABLE TO OUTPUT FILE FULL.
76067. FAILURE IN OUTPUT DEVI CE HANDLER.

23

76123. BISK(0> VI TH INPUT DEVI CE NEVER OPENED.
76143. ERROR IN SYSTEMS DEVICE HANDLER DURING DISKCl).
76162. DITTO. DURING DISK 2 OR 3, OR CLOSING OUTPUT FILE.
7 62.12. DI SK < 3 > WITH FILE NEVER OPEN.
? 64!?» OUTPUT DEVICE HANDLER IS TWO PAGE.
7 6420. CATASTROPHIC SOFTWARE FAILURE.
7 64?6» OUTPUT FILE FAILED TO OPEN. (PTR: ?) • '
7 6477. OUTPUT FILE FAILED TO CLOSE.
7 7 006% ERROR IN SYSTEMS DEVICE HANDLER ON BLOCK 40.
?70J3. DITTO. BLOCK 41.
77416. INPUT DEVICE HANDLER IS TWO PAGE.
7 7440. INPUT FILE FAILED TO OPEN <PTP:?>.

WRITING YOUR OWN SYSTEM DECICE HANDLERS

THE SYSTEMS DEVICE ROUTINES ARE ALWAYS IN FIELD 0. THEY
HAVE THREE ENTRY POINTS.

1. INITIALISE FILES. THIS IS ENTERED WHEN DI SK(J> OCCURS
IN THE ALGOL. J IS IN THE ACCUMULATOR.

2. READ A CHARACTER. RETURN. WITH THE CHARACTER IN THE
ACCUMULATOR.

3. OUTPUT A CHARACTER. THE CHARACTER IS IN THE ACCUMULATOR
ON ENTRY.

THE OVERLAYS NEED TO OVERWRITE DIFFERENT ADDRESSES IN THE
COMPILER AND RUN-TIME SYSTEMS. IN THE CASE OF OVERLAYS.
FOR THE RUN-TIME SYSTEM, THE ROUTINES MUST DO CDF Cl F 10
BEFGRE RETURNING.

COMPILER.
ALL PATCHES
LOCATION
77
.1203
1213

ARE IN FIELD 0
PATCHED
ADDRESS
ADDRESS
ADDRESS

TO CONTAIN
OF INITIALISING ROUTINE (FOR DISK)
OF CHARACTER INPUT ROUTINE
OF CHARACTER OUTPUT ROUTINE

A FAILURE MESSAGE CAN BE GENERATED BY DOING JMS 1457

RUNTIME SY STEM .
ALL PATCHES ARE
LO CATI ON
.1001
1004
2001
2004
2200
2204
4200

THE ROUTINES
TO CONTAIN

ARE IN FIELD 0

A FAILURE
NUMBER IN

IN FIELD 1.
PATCHED
CDF ClF
ADDRESS OF INPUT ROUTINE
CDF ClF
ADDRESS OF OUTPUT ROUTINE
CDF ClF
ADDRESS OF
LAST LOCATION
COMPILED CODE

MESSAGE CAN BE GENERATED BY PLACING THE FAILURE
11200, AND JUMPING TO 11201.

FILE INITIALISATION ROUTINE
IN FIELD 0 AVAILABLE FOR

- 24

DATA STORAGE IN UNUSED PROGRAM SPACE

USING SPARE DEVICE NUMBERS

AS HAS BEEN EXPLAINED IN SECTION 5, THE INPUT/OUTPUT
ROUTINES CAN BE USED TO ACTIVATE ANY PIECE OF MACHINE CODE,
AND PROBABLY THE BEST WAY TO USE ANY FREE PROGRAM SPACE IS
TO USE SOME SPARE DEVICE NUMBERS TO STORE AND FETCH INFORMATI ON
FROM FIELD 0. THIS HAS THE ADVANTAGE .THAT THERE IS NO NEED
TO COMPILE THE ALGOL COMPILER OUTPUT WITH MACRO - THE ROUTINES
CAM BE BUILT INTO THE OPERATING SYSTEM. AS A SUGGESTION FOR
INSTALLATIONS WITH Np SYSTEMS DEVICE, DISK(INDEX) MAY BE
USED TO SET A POINTER TO A LOCATION IN FIELD 0, AND
IF THIS POINTER IS AN AUTO-INDEX REGISTER, THE FREE SPACE
WILL BEHAVE LIKE A FILE WHEN DEVICE 3 IS USED. DISKC0)
WILL REWIND THE FILE. A SIMPLE CODING, WITH NO CHECKING
FOR INDEX WITHIN BOUNDS, FOLLOWS.
FI El, D 0
*10) INDEX, 0
*7540; SETIND, 0; TAD. 175; DCA INDEX; CDF Cl F 10; JMP I SETIND
DEPOS, 01 DCA I INDEX;. CDF Cl F .10,*. JMP I DEPO S
FETCH,. 0; TAD I INDEX; CDF CJ F 10; JMP I DEPOS
FIELD.!
4200,. SETIND-1 /PROTECT CODE FROM LOADER
*2001;. CDF CDF
*2004;. DEPOS
*2200;. CDF Cl F
*2204;. SETIND
*100!;. CDF Cl F
* 1004; FETCH

t
USING ALGOL PROCEDURES

THE ABOVE METHOD WORKS WELL FOR INTEGERS, BUT IS MORE
DIFFICULT TO USE WITH REALS, BECAUSE THE ACCUMULATOR
CANNOT HOLD A REAL NUMBER. FOUR ALGOL PROCEDURES WITH MACHINE
CODE BODIES ARE PROVIDED, WHICH ALLOW THE FREE SPACE TO BE
USED FOR INTEGER OR REAL STORAGE. THEY ACT AS ARRAYS WITH
ONE DIMENSION AND A LOWER BOUND OF 0. TWO VERSIONS ARE
PROVIDED, ONE FOR INTEGERS AND ONE FOR REAL NUMBERS.
CARE MUST BE TAKEN IF THE TWO VERSIONS ARE TO BE USED
TOGETHER, AS THEY STORE NUMBERS IN THE SAME AREA OF MEMORY.
FOR REAL NUMBERS, THE INDEX (SUBSCRIPT) IS MULTI PL I ED BY 3
BY THE ROUTINES, TO ALLOW THREE WORDS OF STORAGE FOR EACH
NUMBER. TO TAKE AM EXAMPLE, IF IT WERE REQUIRED TO STORE 100
INTEGERS, AND SOME REALS AS WELL, THE INTEGERS COULD BE STORED
WITH INDICES 0-99, AND REALS WITH INDICES GREATER THAN 33.

THE HEADINGS ARE:-

•PROCEDURE* F0RSTC INDEX, VALUE)/
•VALUE* INDEX, VALUE; 'INTEGER* INDEX; 'REAL* VALUE;

• COMMENT * STORE REAL NUMBERS IN FEILD 0!
’TRANS* ♦ ’ALGOL *!

REAL*’PROCEDURE* F0RGETC INDEX)!

’COMMENT’ RETRIEVE REAL NUMBERS FROM FIELD 0!
•TRANS’.’ALGOL’!

•PROCEDURE* F0I STC INDEX, VALUE)!
•VALUE’ INDEX, VALUE! ’INTEGER* INDEX, VALUE?
•COMMENT’ STORE INTEGER IN FIELD 0}
•TRANS’.’ALGOL’!

•INTEGER” PROCEDURE* F3I GET(INDEX)/
•VALUE* INDEX; ’INTEGER’ INDEX!
’COMMENT’ RETRIEVE INTEGERS FROM FIELD 0!
•TRANS’ . .., ’ALGOL’!

THE PROCEDURES SHOULD BE INSERTED INTO THE PROGRAM IMMEDIATELY
AFTER THE FIRST BEGIN, OTHERWISE THE MACHINE CODE
INSTRUCTIONS MIGHT CROSS A PAGE BOUNDARY.

THE SPACE AVAILABLE FOR STORING NUMBERS CAN BE FOUND BY
FINDING THE LAST LOCATI ON . 0QCUPI ED BY THE PROGRAM, AND
SUBTRACTING THIS FROM 5777 COR 7577 IF THE DISK
ROUTINES ARE NOT USED). THE RESULT MUST BE DIVIDED BY THREE TO
FIND THE NUMBER OF REALS WHICH CAN BE STORED. LOAD THE
BINARY VERSION OF THE COMPILED PROGRAM (IT MUST BE
COMPILED INTO BINARY BY MACRO OR PAL BECAUSE OF THE MACHINE
CODE PROCEDURE BODIES) AND FIND THE CONTENTS OF LOCATION
175 IN FIELD 1. THIS IS THE NEXT FREE LOCATION IN FIELD 0.

INTERNAL REPRESENTATION OF ALGOL BASIC SYMBOLS.

THESE ARE DECIMAL, AND ARE THE VALUES WHICH ARE PRINTED
IN THE FAILURE MESSAGE. LONG BASIC SYMBOLS ARE REPRESENTED
ON PAPER TAPE BY THE WORD ENCLOSED IN SINGLE QUOTES,
AND IN THE COMPILER BY 40* 1ST LETTERS-SECOND LETTER.

IF A COMPILER ERROR MESSAGE CONTAINS A SYMBOL WHICH IS
NOT ON THE LIST, AN ILLEGAL COM POUND SYMBOL FOLLOWS
A ’. THE USUAL CAUSE OF THIS IS AN UNMATCHED *.

LETTERS A-Z 1-26
DIGITS 0-9 48-57
*• (STRING BRACKETS) 34

(NOT EQUAL TO) 35
$ (END OF PRCGRA-I) 36
% (INTEGER DIVIDE) 37
< 40
) 41
* (MULTI PLY) 42
+ 43

26

45
46

. (REAL DI VI BE) 47
58
59

. — 27
29

.
(EXPONENTIATION) 30
(LESS THAN) 60

61
(GREATER THAN) 62
(LESS THAN OR EQUAL) 63
(GREATER OR EQUAL) 38

s 33
BEGIN* 85

END* 214

FOR* 255

STEP’ 78 0

UNTIL* 854

DO * ■ - 175

IF* 366

TH EM * 8 08

ELSE* “"S “ •’ 212

GOTO ’ # 29 5

PROCEDURE’ 653

REAL ’ 725

INTEGER* 374

BOOLEAN* - " " ■ . •;' : ;''V: 95

ARRAY * 122
VALUE* 88 1
TRANS’ 8 18

ALGOL* 116
TRUE’ 8 18
FALSE* 241

NOT* 575

AND* 118

OR’ 618

COMMENT* 135

LABEL* 48 1

WHILE* 9 28

EQUIVALENT’ 217

OPERATION COOES

THESE ARE THE SIX BIT CODES WHICH ARE OUTPUT BY THE COMPILER.
THE LIST GIVES THEIR NUMBER IN DECIMAL.
WHEN A PROGRAM FAILS, IT IS POSSIBLE TO TRACE WHERE IT WENT
WRONG BY EXAMINING THE COMPILER OUTPUT IN MEMORY, IN
CONJUNCTION WITH TIE COMPILER SYMBOL TABLE. ALL
COMPILER OUTPUT IS IN FIELD 0. THE POINTERS BELOW ARE ALL
IN FIELD 1.

LOCATION 22 POINTS AT TIE START OF THE VARIABLE SPACE
OF THE CURRENT PROCEDURE. THE LOCATION POINTED AT (IN FIELD 1)

27

CONTAINS THE CURRENT PROCEDURE NUMBER. THE NEXT LOCATION
CONTAINS THE RETURN ADDRESS, AND THE NEXT A POINTER TO THE
START OF THE PREVIOUS CALLING PROCEDURE. USING THESE POINTERS
THE SEQUENCE OF CALLING CAN BE TRACED BACKWARDS FROM THE FOINT
OF FAILURE.
LOCATION 26 CONTAINS THE CURRENT INSTRUCTION WORD.
LOCATION 27 CONTAINS THE ADDRESS OF THE CURRENT INSTRUCTION.

ARITHMETIC AND BOOLEAN OPERATIONS ARE DONE ON A STACK.
TOE TOP ELEMENT WILL BE CALLED SI, THE NEXT S2, AND SO ON.
TOE STACK IS ALSO USED BY THE RUN TIME ROUTINES FOR THE
PASSING OF ARGUMENTS.

CODE OPERATION

0
1

2
3
4

5

6
7
8
9
J0
11

12

.13
14

15

JO
.17
.13
19
20
21
22
23
24
25

NO OPERATION.
DECLARE ARRAY. Sl = DEPTH OF DECLARATION.
S2=MUMBER OF DECLARATIONS IN MULTI FLE.
S3*VARIABLE NUMBER OF FIRST DECLARATION.
S4-NUMBER OF WORDS IN EACH ELEMENT.
S5.-M UMBER OF SUBSCRIPTS.
S6hUPPER BOUND OF LAST SUBSCRIPT.
S7=L0WER BOUND OF LAST SUBSCRIPT.
S3, S9, ..ETC., BOUNDS OF OTHER SUBSCRIPTS.
DEVICE:» SI.
READ. TO SI FROM INPUT DEVICE.
STORE LOCAL VARIABLE FROM SI. FOLLOWED
BY VARIABLE NUMBER.
PRINT STRING. FOLLOWED BY STRIPPED ASCII CODE,
TERMINATED BY ZERO.
INTEGER PRINT SI
READ NEXT CHARACTER TO SI.
PRINT SI AS CHARACTER.
JUMP. LOCATION IS IN NEXT WORD.
LEAVE PROCEDURE.
ENTER PROCEDURE WITH NO PARAMETERS, ADDRESS IS IN
NEXT WORD.
GET LOCAL VARIABLE TO SI. FOLLOWED BY VARIABLE
NUMBER.
INTEGER ADD
GF/f ARRAY ELEMENT. S! = ADDRESS OF DOPE VECTOR,
S2=NUMBER OF SUBSCRIPTS, S3 ETC., SUBSCRIPTS.
STORE ARRAY ELEMENT. Sl = VALUE, S2 ETC. ARE SAME
AS S.1 ETC. IN GET ARRAY ELEMENT.
SET 12 BIT CONSTANT IN SI.
INTEGER NEGATE.
REALt INTEGER.
INTEGER MULTIPLY.
INTEGER DIVIDE.
INTEGER SUBTRACT.
S1: = S.I=0.
S.ls ~.SJ>0.
SI: = S1< 0.
GET ANY VARIABLE TO SI. FOLLOWED BY LEVEL NUMBER
AND VARIABLE NUMBER.

28

26 STORE TO AMY VARIABLE FROM SI.
27 STANDARD FUNCTION. FOLLOWED BY ANOTHER CODE.

2 SORT 3 SIN 4 COS
5 ARCTAN 6 EXP 7 LN
8 SI GN . 9 ENTIER 18 AJ3S " '

23 JUMP IF S1= * FAL SE* . ADDRESS IN NEXT WORD.
29 SET.ZERO. .
30 * S.ls *NOT* SI.
31 SJ? = SI * AND* S2.
32 S.1? ~ S.l *OR* S2.
33 S1**S1 *EQUI V* S2. *
34 FOR STATEMENT CALCULATOR.

SI-FINAL VALUE
S2= INCREMENT
S3-TYPE OF CONTROLLED VARIABLE.
S4=0 FOR NO INCREMENT AT THE FIRST TEST
DEPTH OF CONTROLLED VARIABLE IN NEXT 6 BITS OF
THE PROGRAM.
CONTROLLED VARIABLE NUMBER IN THE FOLLOWING 6 BITS.

35 IOC
36 ENTER PROCEDURE, ADDRESS IN NEXT WORD.

S1“NUMBER OF PARAMETERS.
S2=TYPE OF FIRST PARAMETER.
S3= VALUE OF FI RST .PARAMETER. ETC.
THE ADDRESS OF THE PROCEDURE IS IN THE NEXT LOCATION.
THE FIRST LOCATION OF A PROCEDURE IS THE FIXED SPACE
ON THE VARIABLE STACK REQUIRED BY THE PROCEDURE.
TOE NEXT 6 BITS IS THE PROCEDURE NUMBER, FOLLOWED
BY TOE TYPE SPECIFICATION OF THE PARAMETERS, IN
REVERSE ORDER.

37 STORE OUTER BLOCK VARIABLE FROM. SI.
38 FETCH OUTER BLOCK VARIABLE TO SI.
39 DISK FILE SET-UP.
40 SIX IP ...
41 INTEGER SI:»SIGN(S2-S1)
42 SET 6. BIT CONSTANT
43 FIX SI ..
44 FLOAT SI
45 SET FLOATING POINT CONSTANT
46 FLOATING NEGATE
47 SET NEXT. WHOLE WORD
48 RWRITE SI
49 PEAL t REAL
50 FLOATING MULTI PLY
51 FLOAT S2
52 FLOATING DIVIDE
53 FLOATING ADD
54 FLOATING SUBTRACT
55 LEAVE INTERPRETER (AT •TRANS*)
56 FLOATING SI: = SI GNC S2-S1)
57 JUMP TO ADDRESS IN SI
58 ENTER PROCEDURE WHOSE ADDRESS IS IN SI.

NO PARAMETERS
59 AS 58 BUT NUMBER OF PARAMETERS IN SI. FOR 58 AND

59 THE REST OF THE STACK IS SET UP AS FOR 36
PRINT STRING WHOSE ADDRESS IS IN SI 60

29

61 SET STACK DEPTH, FOLLOWED BY 6 BIT CODES FOR PROCEDURE
AND ARRAY DEPTHS REQUIRED

62 IF FOLLOWED BY 0, DELETE TOP LEVEL OF ARRAY STACK
OR IF DY 1 A PROCEDURE LEVEL

63 STOP,- END OF PROGRAM. PRINTS t

END OF TEXT *

